Chapter 4

“Zihintpause” Pause Hint, Version 1.0

The PAUSE instruction is a HINT that indicates the current hart’s rate of instruction retirement
should be temporarily reduced or paused. The duration of its effect must be bounded and may be
zero. No architectural state is changed.

Software can use the PAUSE instruction to reduce energy consumption while executing spin-
wait code sequences. Multithreaded cores might temporarily relinquish execution resources to
other harts when PAUSE is executed. It is recommended that a PAUSE instruction generally be
included in the code sequence for a spin-wait loop.

A future extension might add primitives similar to the x86 MONITOR/MWAIT instructions,
which provide a more efficient mechanism to wait on writes to a specific memory location. How-
ever, these instructions would not supplant PAUSE. PAUSE is more appropriate when polling for
non-memory events, when polling for multiple events, or when software does not know precisely
what events it is polling for.

The duration of a PAUSE instruction’s effect may vary significantly within and among im-
plementations. In typical implementations this duration should be much less than the time to
perform a context switch, probably more on the rough order of an on-chip cache miss latency or
a cacheless access to main memory. Portable software should not use more than one PAUSE
instruction before re-evaluating loop conditions, else performance might substantially degrade on
other implementations, or even on some executions on the same implementation.

PAUSE is encoded as a FENCE instruction with pred=W, succ=0, and fm=0.

PAUSE is encoded as a hint within the FENCE opcode because some implementations are ex-
pected to deliberately stall the PAUSE instruction until outstanding memory transactions have
completed. Because the successor set is null, however, PAUSE does not mandate any particular
memory ordering—hence, it truly s a HINT.

Like other FENCE instructions, PAUSE cannot be used within LR/SC sequences without
voiding the forward-progress guarantee.

The choice of a predecessor set of W is arbitrary, since the successor set is null. Other
HINTs similar to PAUSE might be encoded with other predecessor sets.

33



	Preface
	Introduction
	RISC-V Hardware Platform Terminology
	RISC-V Software Execution Environments and Harts
	RISC-V ISA Overview
	Memory
	Base Instruction-Length Encoding
	Exceptions, Traps, and Interrupts
	UNSPECIFIED Behaviors and Values

	RV32I Base Integer Instruction Set, Version 2.1
	Programmers' Model for Base Integer ISA
	Base Instruction Formats
	Immediate Encoding Variants
	Integer Computational Instructions
	Control Transfer Instructions
	Load and Store Instructions
	Memory Ordering Instructions
	Environment Call and Breakpoints
	HINT Instructions

	``Zifencei'' Instruction-Fetch Fence, Version 2.0
	``Zihintpause'' Pause Hint, Version 1.0
	RV32E Base Integer Instruction Set, Version 1.9
	RV32E Programmers' Model
	RV32E Instruction Set

	RV64I Base Integer Instruction Set, Version 2.1
	Register State
	Integer Computational Instructions
	Load and Store Instructions
	HINT Instructions

	RV128I Base Integer Instruction Set, Version 1.7
	``M'' Standard Extension for Integer Multiplication and Division, Version 2.0
	Multiplication Operations
	Division Operations

	``A'' Standard Extension for Atomic Instructions, Version 2.1
	Specifying Ordering of Atomic Instructions
	Load-Reserved/Store-Conditional Instructions
	Eventual Success of Store-Conditional Instructions
	Atomic Memory Operations

	``Zicsr'', Control and Status Register (CSR) Instructions, Version 2.0
	CSR Instructions

	Counters
	Base Counters and Timers
	Hardware Performance Counters

	``F'' Standard Extension for Single-Precision Floating-Point, Version 2.2
	F Register State
	Floating-Point Control and Status Register
	NaN Generation and Propagation
	Subnormal Arithmetic
	Single-Precision Load and Store Instructions
	Single-Precision Floating-Point Computational Instructions
	Single-Precision Floating-Point Conversion and Move Instructions
	Single-Precision Floating-Point Compare Instructions
	Single-Precision Floating-Point Classify Instruction

	``D'' Standard Extension for Double-Precision Floating-Point, Version 2.2
	D Register State
	NaN Boxing of Narrower Values
	Double-Precision Load and Store Instructions
	Double-Precision Floating-Point Computational Instructions
	Double-Precision Floating-Point Conversion and Move Instructions
	Double-Precision Floating-Point Compare Instructions
	Double-Precision Floating-Point Classify Instruction

	``Q'' Standard Extension for Quad-Precision Floating-Point, Version 2.2
	Quad-Precision Load and Store Instructions
	Quad-Precision Computational Instructions
	Quad-Precision Convert and Move Instructions
	Quad-Precision Floating-Point Compare Instructions
	Quad-Precision Floating-Point Classify Instruction

	RVWMO Memory Consistency Model, Version 2.0
	Definition of the RVWMO Memory Model
	CSR Dependency Tracking Granularity
	Source and Destination Register Listings

	``L'' Standard Extension for Decimal Floating-Point, Version 0.0
	Decimal Floating-Point Registers

	``C'' Standard Extension for Compressed Instructions, Version 2.0
	Overview
	Compressed Instruction Formats
	Load and Store Instructions
	Control Transfer Instructions
	Integer Computational Instructions
	Usage of C Instructions in LR/SC Sequences
	HINT Instructions
	RVC Instruction Set Listings

	``B'' Standard Extension for Bit Manipulation, Version 0.0
	``J'' Standard Extension for Dynamically Translated Languages, Version 0.0
	``T'' Standard Extension for Transactional Memory, Version 0.0
	``P'' Standard Extension for Packed-SIMD Instructions, Version 0.2
	``V'' Standard Extension for Vector Operations, Version 0.7
	``Zam'' Standard Extension for Misaligned Atomics, v0.1
	``Ztso'' Standard Extension for Total Store Ordering, v0.1
	RV32/64G Instruction Set Listings
	Extending RISC-V
	Extension Terminology
	RISC-V Extension Design Philosophy
	Extensions within fixed-width 32-bit instruction format
	Adding aligned 64-bit instruction extensions
	Supporting VLIW encodings

	ISA Extension Naming Conventions
	Case Sensitivity
	Base Integer ISA
	Instruction-Set Extension Names
	Version Numbers
	Underscores
	Additional Standard Extension Names
	Supervisor-level Instruction-Set Extensions
	Hypervisor-level Instruction-Set Extensions
	Machine-level Instruction-Set Extensions
	Non-Standard Extension Names
	Subset Naming Convention

	History and Acknowledgments
	``Why Develop a new ISA?'' Rationale from Berkeley Group
	History from Revision 1.0 of ISA manual
	History from Revision 2.0 of ISA manual
	History from Revision 2.1
	History from Revision 2.2
	History for Revision 2.3
	Funding

	RVWMO Explanatory Material, Version 0.1
	Why RVWMO?
	Litmus Tests
	Explaining the RVWMO Rules
	Preserved Program Order and Global Memory Order
	Load Value Axiom
	Atomicity Axiom
	Progress Axiom
	Overlapping-Address Orderings (Rules 1–3)
	Fences (Rule 4)
	Explicit Synchronization (Rules 5–8)
	Syntactic Dependencies (Rules 9–11)
	Pipeline Dependencies (Rules 12–13)

	Beyond Main Memory
	Coherence and Cacheability
	I/O Ordering

	Code Porting and Mapping Guidelines
	Implementation Guidelines
	Possible Future Extensions

	Known Issues
	Mixed-size RSW


	Formal Memory Model Specifications, Version 0.1
	Formal Axiomatic Specification in Alloy
	Formal Axiomatic Specification in Herd
	An Operational Memory Model
	Intra-instruction Pseudocode Execution
	Instruction Instance State
	Hart State
	Shared Memory State
	Transitions
	Limitations



